INDICE

	APITOLO 1			Il metabolismo è regolato per mantenere bilanciati	
Fo	ndamenti di biochimica			gli intermedi e ottenere la massima economia	28
			1.4	Fondamenti di genetica	30
1.1	Fondamenti di biologia cellulare Le cellule sono le unità strutturali e funzionali	2		La continuità genetica dipende da singole molecole di DNA	30
	di tutti gli organismi viventi	3		La struttura del DNA consente la sua replicazione e la sua riparazione con fedeltà	
	Le dimensioni cellulari sono limitate dalla diffusione	3		quasi assoluta	31
	Gli organismi viventi possono essere raggruppati in tre distinti domini	4		La sequenza lineare del DNA codifica proteine con strutture tridimensionali	31
	Gli organismi si differenziano in base alle fonti di energia e ai precursori biosintetici	4	1.5	Fondamenti di biologia dell'evoluzione Le variazioni nelle istruzioni ereditarie sono	32
	Le cellule dei batteri e degli archea presentano	,		alla base dell'evoluzione	32
	alcune caratteristiche comuni e si differenziano per altre	4		Le biomolecole si sono formate per evoluzione chimica	33
	Le cellule eucariotiche possiedono organelli circondati da una membrana che possono essere			Le molecole di RNA o i loro precursori potrebbero essere stati i primi geni e i primi catalizzatori	34
	isolati Il citoplasma viene organizzato dal citoscheletro	6		L'evoluzione biologica iniziò più di tre miliardi e mezzo di anni fa	35
	ed è molto dinamico Le cellule producono strutture sopramolecolari	8		La prima cellula probabilmente utilizzò combustibili inorganici	36
	Gli studi <i>in vitro</i> possono non rilevare le interazioni tra le molecole			Le cellule eucariotiche si sono evolute da precursori	
1.2	Fondamenti di chimica	9 11		più semplici in diverse tappe L'anatomia molecolare rivela le relazioni	36
	Le biomolecole sono composti del carbonio			evolutive	38
	con vari gruppi funzionali Le cellule contengono un assortimento	12		La genomica funzionale permette di localizzare i geni associati a specifici processi cellulari	39
	universale di piccole molecole Le macromolecole sono i principali costituenti	13		ll confronto fra i diversi genomi ha un notevole impatto nella biologia umana e nella medicina	39
	cellulari	13		Termini chiave	40
BO	(1.1 Il peso molecolare, la massa molecolare e le loro corrette unità di misura	15		Ulteriori letture Problemi	40 42
	La struttura tridimensionale può essere descritta in termini di configurazione e conformazione	16		Problemi	42
BO	(1.2 Louis Pasteur e l'attività ottica: in vino, veritas	18		DARTE 4	
	Le interazioni tra le biomolecole sono stereospecifiche	19		PARTE 1 RUTTURA E CATALISI	
1.3	Fondamenti di fisica	21			
	Gli organismi viventi si trovano in uno stato stazionario dinamico, mai in equilibrio			CAPITOLO 2 Icqua	
	con l'ambiente circostante	21			
	Gli organismi trasformano l'energia e la materia ottenuta dall'ambiente	21	2.1	Interazioni deboli nei sistemi acquosi I legami idrogeno conferiscono all'acqua	49
BO	(1.3 Entropia: i vantaggi di essere disorganizzati	22		proprietà insolite	49
	Il flusso degli elettroni fornisce energia			L'acqua forma legami idrogeno con i soluti polari	51
	agli organismi Per creare e mantenere l'ordine sono necessari	23		L'acqua interagisce elettrostaticamente con i soluti carichi	52
	lavoro ed energia	23		Quando le sostanze cristalline si sciolgono l'entropia aumenta	52
	L'accoppiamento energetico collega le reazioni biologiche	24		I gas non polari sono poco solubili in acqua	53
	l valori di $K_{\rm eq}$ e il ΔG° sono una misura della tendenza di una reazione a procedere spontaneamente	25		l composti non polari causano variazioni energeticamente non favorevoli nella struttura dell'acqua	53
	Gli enzimi promuovono sequenze di reazioni chimiche	27		Le interazioni di van der Waals sono attrazioni interatomiche deboli	55

27

55

XII Indice © 978-88-08-2**6148-**9

	Le interazioni deboli sono fondamentali per la struttura e la funzione delle macromolecole	55		Alcune proteine contengono gruppi chimici diversi dagli amminoacidi	92
	l soluti influenzano le proprietà colligative delle soluzioni acquose	57	3.3	Lavorare con le proteine	93
22	Ionizzazione dell'acqua, degli acidi	31		Le proteine possono essere separate e purificate	93
2.2	deboli e delle basi deboli	60		Le proteine possono essere separate e caratterizzate mediante elettroforesi	96
	L'acqua pura è poco ionizzata	60		Anche le proteine non separate possono essere	, ,
	La ionizzazione dell'acqua è espressa			quantificate	98
	da una costante di equilibrio	61	3.4	Struttura delle proteine: struttura	
	La scala del pH indica le concentrazioni degli			primaria	100
	ioni H ⁺ e OH ⁻ Gli acidi e le basi deboli hanno costanti	62		La funzione delle proteine dipende dalla loro struttura primaria	100
	di dissociazione caratteristiche	63		Sono state determinate le sequenze	
	Dalle curve di titolazione degli acidi deboli si può risalire al valore dei p $K_{\rm a}$	64		amminoacidiche di milioni di proteine La chimica delle proteine sfrutta metodologie	101
2.3	Sistemi tampone contro le variazioni			che derivano dalle tecniche classiche	
	di pH nei sistemi biologici	65		di sequenziamento dei polipeptidi	101
	I tamponi sono miscele di acidi deboli e delle loro basi coniugate	65		La spettrometria di massa offre un metodo alternativo per determinare le sequenze	
	L'equazione di Henderson-Hasselbalch mette			amminoacidiche	104
	in relazione tra loro il pH, il p K_a e la concentrazione della soluzione tampone	66		Piccoli peptidi e proteine possono essere sintetizzati con metodi chimici	107
	Gli acidi o le basi deboli si oppongono nelle cellule			Dalle sequenze amminoacidiche si possono	107
	e nei tessuti alle variazioni di pH	67		ricavare importanti informazioni biochimiche Le sequenze proteiche possono far luce	107
	Il diabete non trattato provoca una grave acidosi	69		sulla storia della vita sulla Terra	109
RO	X 2.1 MEDICINA Essere cavia di se stessi (non provate questo esperimento a casa!)	70	BO	(3.2 Sequenze consenso e sequenze logo	109
2.4	L'acqua come reagente	71		Termini chiave	113
2.5	L'ambiente acquoso è adatto alla vita	71		Ulteriori letture	113
	Termini chiave	72		Problemi	114
	Ulteriori letture	72		FIODIEIII	114
	Problemi	73		APITOLO 4 ruttura tridimensionale delle proteine	
(CAPITOLO 3				
	nminoacidi, peptidi e proteine		4.1	Uno sguardo alla struttura delle proteine	121
3.1	Gli amminoacidi	80		La conformazione delle proteine è stabilizzata	
	Gli amminoacidi hanno proprietà strutturali comuni	80		da interazioni deboli	122
	l residui amminoacidici delle proteine sono tutti			Il legame peptidico è rigido e planare	123
	stereoisomeri L	81	4.2	Struttura secondaria delle proteine	125
	Gli amminoacidi possono essere classificati in base			L' $lpha$ elica è una comune struttura secondaria	126
BO	al loro gruppo R X 3.1 METODI Assorbimento della luce da parte delle	82	BO	(4.1 METODI Come distinguere l'elica destrorsa da quella sinistrorsa	127
	molecole: la legge di Lambert-Beer	84		La sequenza amminoacidica influenza la stabilità	407
	Gli amminoacidi non comuni possono avere delle funzioni importanti	85		dell' α elica La conformazione β organizza le catene	127
	Gli amminoacidi possono comportarsi da acidi e da basi	85		polipeptidiche in foglietti I ripiegamenti β sono frequenti nelle proteine	129 129
	Gli amminoacidi hanno curve di titolazione caratteristiche	85		Le strutture secondarie comuni hanno caratteristici angoli diedrici	129
	Dalle curve di titolazione è possibile prevedere la carica elettrica degli amminoacidi	88		Le strutture secondarie comuni possono essere evidenziate dalla tecnica del dicroismo circolare	131
	Gli amminoacidi differiscono per le loro proprietà acido-base	88	4.3	Struttura terziaria e quaternaria delle	
3.2	I peptidi e le proteine	89		proteine Le proteine fibrose sono adattate a ruoli strutturali	131 131
	I peptidi sono catene di amminoacidi	89	ROY	(4.2 La permanente è un'operazione di ingegneria	101
	I peptidi possono essere distinti in base alla loro capacità di ionizzazione	90		biochimica	133
	I peptidi biologicamente attivi e i polipeptidi hanno dimensioni e composizioni molto variabili	91	RO)	(4.3 MEDICINA La ragione per cui marinai, esploratori e studenti dovrebbero nutrirsi con frutta e verdura fresche	134

© 978-88-08-2**6148**-9

	Nelle proteine globulari la diversità strutturale riflette la diversità funzionale	136		Il legame cooperativo può essere descritto da due modelli	177
	La mioglobina ha rappresentato il primo esempio			L'emoglobina trasporta anche H^+ e CO_2	178
BO	della complessità strutturale delle proteine globulari 4.4 La Banca dati delle proteine	137 138		Il legame dell'ossigeno all'emoglobina è regolato dal 2,3-bisfosfoglicerato	179
	(4.5 METODI Come determinare la struttura tridimensionale di una proteina	139		L'anemia a cellule falciformi è una malattia delle molecole emoglobiniche	180
	Le proteine globulari hanno varie strutture terziarie	142	5.2	Interazioni complementari tra proteine e ligandi: il sistema immunitario	
	I motivi proteici vengono usati per classificare le strutture delle proteine	144		e le immunoglobuline La risposta immunitaria utilizza una serie	182
	La struttura quaternaria comprende strutture proteiche che vanno dai dimeri a complessi molto più grandi	147		di cellule e proteine specializzate Gli anticorpi hanno due siti identici per il legame	182
	Alcune proteine o alcuni segmenti di proteine sono intrinsecamente disordinati	147		dell'antigene Gli anticorpi si legano saldamente	183
4.4	Denaturazione e ripiegamento	140		e specificamente agli antigeni	185
	delle proteine	149		Molte importanti tecniche analitiche si basano sulle interazioni antigene-anticorpo	186
	La perdita della struttura provoca la perdita della funzione delle proteine	150	5.3	Interazioni tra proteine modulate dall'energia chimica: actina, miosina	
	La sequenza degli amminoacidi determina la struttura terziaria	151		e motori molecolari	187
	I polipeptidi si ripiegano rapidamente secondo un processo a tappe	151		Le principali proteine del muscolo sono l'actina e la miosina	187
	Il ripiegamento di alcune proteine è un processo assistito	153		Altre proteine organizzano i filamenti spessi e i filamenti sottili in strutture ordinate	189
	I difetti nell'avvolgimento delle proteine sono la base molecolare di un vasto numero			l filamenti spessi di miosina scorrono lungo i filamenti sottili di actina	190
	di malattie genetiche	155		Termini chiave	192
BO	(4.6 MEDICINA Morte per ripiegamento non corretto: le malattie da prione	157		Ulteriori letture	192
	Termini chiave	159		Problemi	192
	Ulteriori letture	159		CAPITOLO 6	
	Problemi	160		ienzimi	
	APITOLO 5		6.1	Introduzione agli enzimi	197
	funzione delle proteine		0.1	La maggior parte degli enzimi è costituita	197
	·			da proteine	198
5.1	Legame reversibile di una proteina con un ligando: le proteine che legano			Gli enzimi sono classificati in base alle reazioni che catalizzano	199
	l'ossigeno	166	6.2	Come lavorano gli enzimi	199
	L'ossigeno si lega al gruppo prostetico eme Le globine sono una famiglia di proteine	166		Gli enzimi modificano la velocità delle reazioni, non gli equilibri	200
	che legano l'ossigeno La mioglobina ha un solo sito di legame	167		La velocità e gli equilibri delle reazioni hanno precise definizioni termodinamiche	202
	per l'ossigeno Le interazioni proteina-ligando possono essere	167		Il potere catalitico e la specificità degli enzimi dipendono da un limitato numero di principi	202
	descritte quantitativamente Il meccanismo di legame dei ligandi dipende	167		Le interazioni deboli tra l'enzima e il substrato diventano ottimali nello stato di transizione	203
	dalla struttura delle proteine L'emoglobina trasporta l'ossigeno nel sangue	170 171		L'energia di legame contribuisce alla specificità della reazione e alla catalisi	205
	Le subunità dell'emoglobina sono strutturalmente simili alla mioglobina	171		Specifici gruppi catalitici contribuiscono alla catalisi	206
	Il legame dell'ossigeno provoca una variazione strutturale nell'emoglobina	171	6.3	La cinetica enzimatica, un approccio alla comprensione del meccanismo	
	L'emoglobina lega l'ossigeno			di azione degli enzimi	208
ВО	con un meccanismo cooperativo (5.1 MEDICINA II monossido di carbonio:	173		La concentrazione del substrato modifica la velocità delle reazioni catalizzate dagli enzimi	208
	un assassino furtivo Il legame cooperativo di un ligando può essere	175		La relazione tra concentrazione del substrato e velocità della reazione enzimatica può essere	87.5
	descritto quantitativamente	176		espressa in modo quantitativo	210

XIV Indice © 978-88-08-2**6148-**9

	l parametri cinetici possono essere utilizzati			I comuni monosaccaridi hanno strutture cicliche	253
BO	per confrontare le attività degli enzimi (6.1 Trasformazioni dell'equazione di	211		Gli organismi contengono una grande varietà di derivati degli esosi	257
	Michaelis-Menten: il grafico dei doppi reciproci	212		I monosaccaridi sono agenti riducenti	257
	Molti enzimi catalizzano reazioni a due o più substrati	214	ВО	K 7.1 MEDICINA Determinazione della concentrazione di glucosio nel sangue (glicemia) nella diagnosi e trattamento del diabete	258
	La cinetica allo stato pre-stazionario può dare informazioni sulle specifiche tappe della reazione	214		I disaccaridi contengono un legame glicosidico	260
	Gli enzimi possono essere soggetti a inibizione reversibile o irreversibile	215	ВО	X 7.2 Lo zucchero è dolce, e lo sono anche poche altre cose	262
ВО	6.2 Indagini cinetiche per identificare i meccanismi		7.2	Polisaccaridi	263
ВО	di inibizione (6.3 MEDICINA Cura della malattia africana del sonno	217		Alcuni omopolisaccaridi rappresentano una forma di riserva di combustibile	263
	basata sul principio del "cavallo di Troia" biochimico			Alcuni polisaccaridi hanno ruoli strutturali	265
	L'attività enzimatica dipende dal pH	220		Fattori sterici e legami idrogeno influenzano	
6.4	Esempi di reazioni enzimatiche	221		il ripiegamento dei polisaccaridi	266
	Il meccanismo d'azione della chimotripsina comporta l'acilazione e la deacilazione di un residuo di serina	222		Le pareti cellulari dei batteri e delle alghe contengono eteropolisaccaridi strutturali	267
	La comprensione dei meccanismi d'azione delle proteasi porta allo sviluppo di nuovi	222		I glicosamminoglicani sono eteropolisaccaridi della matrice extracellulare	268
	trattamenti delle infezioni da HIV L'esochinasi va incontro all'adattamento indotto,	226	7.3	Glicoconiugati: proteoglicani, glicoproteine e glicosfingolipidi	271
	a seguito del legame del substrato Il meccanismo di reazione dell'enolasi richiede	227		I proteoglicani sono macromolecole della superficie cellulare e della matrice	272
	ioni metallici	228		extracellulare contenenti glicosamminoglicani Le glicoproteine hanno oligosaccaridi legati	272
	Il lisozima utilizza due reazioni successive di spostamento nucleofilico	229		covalentemente I glicolipidi e i lipopolisaccaridi sono componenti	274
	La comprensione del meccanismo d'azione degli enzimi può avere importanti risvolti			delle membrane	276
65	in medicina Enzimi regolatori	232 234	7.4	I carboidrati come molecole informazionali: il codice saccaridico	277
0.5	Gli enzimi allosterici vanno incontro a variazioni conformazionali in risposta al legame dei modulatori			Le lectine sono proteine che leggono il codice saccaridico e mediano molti processi biologici	277
	Le proprietà cinetiche degli enzimi allosterici non seguono il comportamento descritto	254		Le interazioni lectine-carboidrati sono altamente specifiche e spesso polivalenti	280
	dalla cinetica di Michaelis-Menten	236	7.5	Lavorare con i carboidrati	282
	Alcuni enzimi sono regolati da modificazioni			Termini chiave	284
	covalenti reversibili	237		Ulteriori letture	285
	I gruppi fosforici modificano la struttura e l'attività catalitica degli enzimi	238		Problemi	286
	Le fosforilazioni multiple permettono un accurato controllo della regolazione	239		CAPITOLO 8	
	Alcuni enzimi e altre proteine sono regolati per scissione proteolitica di un precursore	239		icleotidi e acidi nucleici	
	enzimatico	240	8.1	Alcune nozioni di base	291
	Una cascata di zimogeni attivati per via proteolitica			I nucleotidi e gli acidi nucleici contengono basi	
	porta alla coagulazione sanguigna Alcuni enzimi regolatori utilizzano meccanismi	240		azotate e pentosi Nelle catene degli acidi nucleici i nucleotidi sono	291
	di regolazione diversi	243		uniti da legami fosfodiestere	294
	Termini chiave	245		Le proprietà delle basi dei nucleotidi determinano	206
	Ulteriori letture	245		la struttura tridimensionale degli acidi nucleici	296
	Problemi	246	8.2	Struttura degli acidi nucleici Il DNA è una doppia elica in cui viene conservata	297
	APITOLO 7			l'informazione genetica Il DNA può avere forme tridimensionali diverse	297 300
	rboidrati e glicobiologia			Alcune sequenze del DNA adottano strutture insolite	301
7.1	Monosaccaridi e disaccaridi	251		Gli RNA messaggeri codificano le catene	201
	Le due famiglie dei monosaccaridi: gli aldosi	0.5-5		polipeptidiche	303
	e i chetosi	252		Molti RNA hanno strutture tridimensionali	201
	l monosaccaridi hanno centri asimmetrici	252		complesse	304

© 978-88-08-2**6148**-9 Indice XV

8.3	3	307	I metodi di sequenziamento del DNA di nuova	
	La doppia elica del DNA e dell'RNA può essere	207	generazione hanno favorito il sequenziamento genomico	350
	denaturata	307	BOX 9.2 MEDICINA Medicina genomica personalizzata	351
	Gli acidi nucleici di specie diverse possono formare ibridi	308	Il genoma umano contiene i geni e molti altri	55.
	I nucleotidi e gli acidi nucleici vanno incontro		tipi di sequenze	354
	a trasformazioni non enzimatiche	309	Il sequenziamento del genoma ci informa sulla natura umana	357
	Alcune basi del DNA vengono metilate È possibile determinare la sequenza di lunghi	312	La comparazione dei genomi aiuta a localizzare	337
	tratti di DNA	312	i geni coinvolti in una patologia	358
	La sintesi chimica del DNA è stata automatizzata	314	ll sequenziamento del genoma ci dà informazioni sul nostro passato e ci fornisce delle opportunità	
8.4	Altre funzioni dei nucleotidi	316	per il nostro futuro	361
	l nucleotidi trasportano energia chimica nella cellula	316	BOX 9.3 A conoscenza dei Neanderthal	362
	I nucleotidi adenilici fanno parte di molti cofattori	310	Termini chiave	362
	enzimatici	316	Ulteriori letture	363
	Alcuni nucleotidi agiscono da molecole regolatrici	318	Problemi	364
	Termini chiave	318		
	Ulteriori letture	318	CAPITOLO 10	
	Problemi	319	Hipidi	
			10.1 I lipidi di riserva	369
	APITOLO 9 Enologie basate sull'informazione		Gli acidi grassi sono derivati degli idrocarburi	369
	ntenuta nel DNA		l triacilgliceroli sono esteri degli acidi grassi	
			con il glicerolo	371
9.1	Lo studio dei geni e dei loro prodotti	324	l triacilgliceroli sono una riserva energetica e fungono da isolamento termico	372
	I geni possono essere isolati tramite il clonaggio del DNA	324	L'idrogenazione parziale degli oli durante la cottura genera acidi grassi <i>trans</i>	373
	Le endonucleasi di restrizione e le DNA ligasi permettono di ottenere il DNA ricombinante	324	Le cere fungono da riserve energetiche	
	I vettori di clonaggio permettono l'amplificazione	52.	e da idrorepellenti	373
	dei segmenti di DNA inseriti	327	10.2 I lipidi strutturali delle membrane I glicerofosfolipidi sono derivati dell'acido	374
	I geni clonati possono essere espressi per amplificare la produzione delle proteine	331	fosfatidico	375
	Per esprimere le proteine ricombinanti	331	Alcuni glicerofosfolipidi hanno acidi grassi legati	
	si utilizzano molti sistemi diversi tra loro	332	tramite legami etere	376
	Alterazioni nei geni clonati producono proteine modificate	333	I cloroplasti contengono galattolipidi e solfolipidi	377
	Le etichette terminali forniscono siti di legame	333	Gli archea contengono peculiari lipidi di membrana	377
	nella purificazione per affinità	335	Gli sfingolipidi sono derivati della sfingosina	378
	Le sequenze dei geni possono essere amplificate utilizzando la reazione a catena della polimerasi	336	Gli sfingolipidi sulla superficie cellulare servono come siti per il riconoscimento biologico	379
BO	(9.1 METODI Un potente strumento per la medicina forense	339	l fosfolipidi e gli sfingolipidi vengono degradati nei lisosomi	380
9.2	Utilizzo dei metodi basati sul DNA per		Gli steroli sono formati da quattro anelli	200
	comprendere la funzione delle proteine	342	carboniosi fusi BOX 10.1 MEDICINA Alcune malattie ereditarie dell'uomo	380
	Le librerie di DNA sono raccolte specializzate di informazioni genetiche Le relazioni tra le sequenze o le strutture forniscono	342	derivano da un accumulo anormale di lipidi di membrana nei tessuti	381
	informazioni sulla funzione delle proteine	343	10.3 I lipidi come segnali, cofattori	
	Le proteine di fusione e l'immunofluorescenza		e pigmenti	382
	possono far localizzare le proteine all'interno delle cellule	344	ll fosfatidilinositolo e i derivati della sfingosina agiscono da segnali intracellulari	382
	L'identificazione delle interazioni proteina- proteina può contribuire a definire la funzione	215	Gli eicosanoidi trasferiscono il messaggio alle cellule vicine	383
	delle proteine I DNA microarray rivelano l'espressione dell'RNA ofornicono anche altre informazioni	345	Gli ormoni steroidei trasmettono messaggi da un tessuto all'altro	384
9.3	e forniscono anche altre informazioni La genomica e la storia degli esseri	348	Le piante vascolari producono migliaia di segnali volatili	384
	umani	350	Le vitamine A e D sono precursori ormonali	385

XVI Indice © 978-88-08-2**6148-**9

	Le vitamine E e K e i chinoni lipidici sono cofattori delle reazioni di ossidoriduzione	386	11.3	Trasporto di soluti attraverso le membrane	415
	l dolicoli attivano i precursori degli zuccheri per le biosintesi	388		Il trasporto passivo è facilitato da proteine di membrana	415
	Molti pigmenti naturali sono dieni coniugati lipidici	388		I trasportatori e i canali ionici sono molto diversi	416
	l polichetidi sono prodotti naturali che hanno attività biologiche	388		Il trasportatore del glucosio degli eritrociti media un trasporto passivo	417
10.4	L'estrazione dei lipidi richiede solventi organici	389 389		Lo scambiatore cloruro-bicarbonato catalizza il cotrasporto elettroneutrale degli anioni attraverso la membrana plasmatica	419
	La cromatografia per assorbimento separa i lipidi in base alla loro diversa polarità	389	ВОХ	(11.1 MEDICINA In due forme di diabete vi è un trasporto difettoso di glucosio e di acqua	420
	La cromatografia gas-liquido separa miscele di derivati lipidici volatili	390		Il trasporto attivo trasferisce un soluto contro gradiente di concentrazione o contro gradiente	120
	L'idrolisi specifica aiuta a determinare la struttura dei lipidi	390		elettrochimico Le ATPasi di tipo P vengono fosforilate durante	421
	La spettrometria di massa rivela la struttura completa dei lipidi	391		i loro cicli catalitici Le ATPasi di tipo V ed F sono pompe protoniche	423
	La lipidomica cerca di catalogare tutti i lipidi e di identificare le loro funzioni	391		guidate dall'ATP I trasportatori ABC usano l'ATP per il trasporto	424
	Termini chiave	392		attivo di una grande varietà di substrati	426
	Ulteriori letture Problemi	393 394	ВОХ	I 11.2 MEDICINA Un canale ionico difettoso causa la fibrosi cistica	427
	ADITOLO 44			I gradienti ionici forniscono l'energia per il trasporto attivo secondario	428
	APITOLO 11 mbrane biologiche e trasporto			Le acquaporine formano canali transmembrana idrofilici per il passaggio dell'acqua	431
11.1	La composizione e l'architettura			l canali ionici selettivi permettono il movimento veloce degli ioni attraverso la membrana	433
	delle membrane Ogni tipo di membrana ha una composizione	398		La funzione dei canali ionici può essere misurata elettricamente	434
	in lipidi e proteine caratteristica Tutte le membrane biologiche hanno alcune	398		La struttura del canale per il K+ spiega le basi molecolari della sua specificità	434
	proprietà fondamentali in comune Il doppio strato lipidico è l'elemento strutturale	399		I canali ionici controllati dal voltaggio sono essenziali per le funzioni neuronali	436
	di base delle membrane Si possono distinguere tre tipi di proteine,	399		Canali ionici difettosi possono avere conseguenze fisiologiche dannose	437
	che differiscono tra loro per il modo in cui sono associate alla membrana	402		Termini chiave	440
	Molte proteine di membrana attraversano completamente il doppio strato lipidico	402		Ulteriori letture Problemi	440 443
	Le proteine integrali si mantengono associate alle membrane grazie a interazioni idrofobiche con i lipidi	403		APITOLO 12	
	La topologia delle proteine integrali di membrana talvolta può essere prevista			segnalazione	
	in base alla sequenza amminoacidica I lipidi legati covalentemente funzionano da ancore	404	12.1	Caratteristiche generali della trasduzione del segnale	447
	idrofobiche per le proteine di membrana	406	BOX	(12.1 METODI II grafico di Scatchard quantifica	4.40
11.2	Dinamica delle membrane I gruppi acilici dell'interno del doppio strato	407	12.2	l'interazione recettore-ligando I recettori accoppiati alle proteine G	449
	possono essere disposti in vari gradi di ordine Il movimento dei lipidi attraverso il doppio strato	407		e i secondi messaggeri Il sistema recettoriale β-adrenergico agisce	451
	deve essere catalizzato I lipidi e le proteine si spostano lateralmente	408	ВОХ	tramite un secondo messaggero, il cAMP (12.2 MEDICINA Le proteine G: interruttori binari	451
	nel doppio strato Gli sfingolipidi e il colesterolo si associano	409		in condizioni normali e patologiche Diversi meccanismi provocano la terminazione	455
	per formare degli agglomerati detti zattere lipidiche Le curvature e la fusione della membrana sono	410		della risposta del recettore β-adrenergico Il recettore β-adrenergico viene desensibilizzato	458
	fondamentali per molti processi biologici Le proteine integrali della membrana plasmatica	412		mediante fosforilazione e associazione all'arrestina	458
	intervengono nei processi di adesione superficiale, di segnalazione e in altri processi cellulari	413		L'AMP ciclico agisce da secondo messaggero per molte molecole regolatrici	459

© 978-88-08-2**6148**-9

BOX	(12.3 METODI FRET: visualizzazione biochimica di una cellula vivente	461	Nei vertebrati l'olfatto e il gusto utilizzano meccanismi simili a quelli della vista	494
	Il diacilglicerolo, l'inositolo trisfosfato e il Ca ²⁺ svolgono funzioni correlate come secondi	462	BOX 12.4 MEDICINA Cecità ai colori: l'esperimento di John Dalton dalla tomba	495
	messaggeri Il calcio è un secondo messaggero che può	463	l GPCR dei sistemi sensoriali hanno molte caratteristiche in comune con i GPCR dei sistemi	
	essere localizzato nello spazio e nel tempo	464	di segnalazione ormonale	496
	I GPCR mediano l'azione di una grande varietà di segnali	465	12.11 Regolazione del ciclo cellulare da parte	400
12 2	Recettori con attività tirosina chinasica	467	delle proteina chinasi Il ciclo cellulare si svolge in quattro fasi	498 498
12.5	La stimolazione del recettore dell'insulina dà inizio	407	Nella cellula i livelli di proteina chinasi dipendenti	430
	a una cascata di reazioni di fosforilazione	167	dalla ciclina oscillano	498
	di proteine Il fosfolipide di membrana PIP ₃ agisce a livello	467	Le CDK regolano la divisione cellulare mediante	F01
	di una biforcazione della via di segnalazione dell'insulina	469	la fosforilazione di specifiche proteine 12.12 Oncogeni, geni soppressori dei tumori	501
	Anche il sistema di segnalazione JAK-STAT		e morte cellulare programmata	502
	ha un'attività tirosina chinasica	471	Gli oncogeni sono forme mutanti di geni per le proteine che regolano il ciclo cellulare	503
	Lo scambio di informazioni tra i sistemi di segnalazione è frequente e complesso	472	l difetti di alcuni geni rimuovono le normali limitazioni esercitate sulla divisione cellulare	503
12.4	I recettori con attività guanilil ciclasica, il cGMP e la proteina chinasi G	473	BOX 12.5 MEDICINA Sviluppo di inibitori della proteina chinasi per il trattamento del cancro	504
12.5	Proteine adattatrici polivalenti		L'apoptosi è un suicidio cellulare programmato	506
	e zattere delle membrane	474	Termini chiave	509
	Moduli proteici legano residui fosforilati di Tyr, Ser o Thr nelle proteine partner	474	Ulteriori letture	509
	Le zattere di membrana e le caveole segregano	17 1	Problemi	512
	le proteine di segnalazione	477		
12.6	Canali ionici controllati	478		
	I canali ionici delle cellule eccitabili producono un segnale elettrico	478		
	l canali ionici controllati dal voltaggio producono potenziali d'azione nei neuroni	479	PARTE 2	
	Il recettore dell'acetilcolina è un canale ionico		BIOENERGETICA E METABOLISMO	
	controllato dal ligando	481		
	I neuroni hanno canali recettoriali che rispondono a diversi neurotrasmettitori	482	CAPITOLO 13 Bioenergetica e tipi di reazioni biochimic	h o
	I canali ionici sono il bersaglio di molte tossine	482	bioeriergetica e tipi di reazioni biocriiniici	iie
12.7	Le integrine: recettori bidirezionali		13.1 Bioenergetica e termodinamica	521
	di adesione cellulare	484	Le trasformazioni biologiche dell'energia	
12.8	Regolazione della trascrizione da parte		seguono le leggi della termodinamica	522
	dei recettori nucleari degli ormoni	485	Le cellule hanno bisogno di fonti di energia libera	523
12.9	Segnalazione nei microrganismi e nelle piante	486	La variazione di energia libera standard è direttamente correlata alla costante di equilibrio	523
	La segnalazione batterica comporta la fosforilazione in un sistema a due componenti	487	La variazione di energia libera reale dipende dalle concentrazioni dei reagenti e dei prodotti	524
	I sistemi di segnalazione delle piante hanno		Le variazioni di energia libera si possono sommare	526
	alcuni dei componenti utilizzati dai microbi e dai mammiferi	487	13.2 Logica chimica e reazioni biochimiche più comuni	527
	Le piante rilevano l'etilene attraverso un sistema a due componenti e una cascata delle MAPK	488	Le equazioni chimiche e biochimiche non sono identiche	532
	Proteina chinasi simili a recettori trasducono i segnali di peptidi e brassinosteroidi	489	13.3 Trasferimenti di gruppi fosforici e ATP	533
12.10	Trasduzione sensoriale nella vista,		La variazione di energia libera dell'idrolisi dell'ATP ha un valore molto negativo	533
	nell'olfatto e nel gusto	490	Altri composti fosforilati e tioesteri hanno	
	Il sistema visivo utilizza i classici meccanismi GPCR	490	un'energia libera di idrolisi molto elevata	535
	La rodopsina eccitata agisce attraverso la proteina G trasducina riducendo		L'ATP fornisce energia mediante trasferimenti di gruppi, non per semplice idrolisi	537
	la concentrazione di cGMP	492	L'ATP dona gruppi fosforici, pirofosforici e adenililici	539
	Il segnale visivo viene spento rapidamente	493	BOX 13.1 I lampeggiamenti delle lucciole: messaggi	
	Le cellule a cono determinano la visione a colori	494	luminosi di ATP	540

XVIII Indice © 978-88-08-2**6148-**9

L'organizzazione delle macromolecole informazionali richiede energia	540	14.3	Il destino del piruvato in condizioni anaerobiche: la fermentazione	579
L'ATP fornisce l'energia per il trasporto a e per la contrazione muscolare	ttivo 541		Il piruvato è l'accettore terminale di elettroni nella fermentazione lattica	579
In tutti i tipi di cellule avvengono transfo tra nucleotidi	osforilazioni 541	BOX	(14.2 Glicolisi in condizioni di limitate quantità di ossigeno in atleti, alligatori e celacantidi	579
Il polifosfato inorganico è un potenziale di gruppi fosforici	e donatore 542		L'etanolo è il prodotto della fermentazione alcolica	580
3.4 Le reazioni biologiche di ossidoriduzione	543		La tiamina pirofosfato trasporta gruppi "acetaldeidici attivati"	581
Il flusso di elettroni può produrre un lav biologico	oro 543		Le fermentazioni vengono usate per produrre sostanze alimentari di interesse industriale	581
Le ossidoriduzioni possono essere desc come semireazioni	critte 543	BOX	14.3 La fermentazione alcolica: preparazione della birra e di biocombustibili	582
Le ossidazioni biologiche avvengono spattraverso deidrogenazioni	oesso 544	14.4	La gluconeogenesi La conversione del piruvato in fosfoenolpiruvato	584
l potenziali di riduzione sono una misur dell'affinità per gli elettroni	ra 545		richiede due reazioni esoergoniche	585
l potenziali di riduzione standard conse	entono		La seconda deviazione è la conversione del fruttosio 1,6-bisfosfato in fruttosio 6-fosfato	588
di calcolare la variazione di energia libe L'ossidazione del glucosio ad anidride c	arbonica		La terza deviazione è la conversione del glucosio 6-fosfato in glucosio	588
nelle cellule richiede trasportatori speci di elettroni	ializzati 547		La gluconeogenesi è energeticamente dispendiosa, ma essenziale	588
Coenzimi e proteine in numero molto li agiscono da trasportatori universali di e			Gli intermedi del ciclo dell'acido citrico e molti amminoacidi sono glucogenici	589
Il NADH e il NADPH agiscono come tras solubili di elettroni	sportatori 548		I mammiferi non possono convertire gli acidi grassi in glucosio	589
La carenza nella dieta di niacina, la vitar presente nel NAD e nel NADP, causa la p			La glicolisi e la gluconeogenesi sono reciprocamente regolate	590
Le flavoproteine contengono nucleotid saldamente legati	di flavinici 550	14.5	L'ossidazione del glucosio attraverso la via del pentosio fosfato	590
Termini chiave	552	BOX	14.4 MEDICINA Perché Pitagora non avrebbe	390
Ulteriori letture	552		mangiato le fave: deficit di glucosio 6-fosfato deidrogenasi	591
Problemi	554		La fase ossidativa produce pentosio fosfato e NADPH	592
CAPITOLO 14 Glicolisi, gluconeogenesi			La fase non ossidativa ricicla i pentosi fosfato in glucosio-6 fosfato	592
e via del pentosio fosfato			Un difetto nella transchetolasi causa	3,2
			un peggioramento della sindrome di Wernicke-Korsakoff	595
4.1 La glicolisi	560		Il glucosio 6-fosfato è ripartito tra la glicolisi	393
Uno sguardo d'insieme: la glicolisi può divisa in due fasi	essere 560		e la via del pentosio fosfato	595
La fase preparatoria della glicolisi richie	de ATP 564		Termini chiave	595
La fase di recupero energetico della glic genera ATP e NADH	colisi 566		Ulteriori letture Problemi	596 597
Il bilancio complessivo comporta un gu netto di ATP	uadagno 570			
La glicolisi è strettamente regolata	571		APITOLO 15	
L'assorbimento del glucosio è carente n mellito di tipo 1	nel diabete 571	Pri	ncipi di regolazione metabolica	
30X 14.1 MEDICINA L'elevata velocità della q nei tumori suggerisce alcuni bersagli per		15.1	Regolazione delle vie metaboliche Le cellule e gli organismi mantengono	603
la chemioterapia e facilita la diagnosi	572		una condizione di stato stazionario dinamico	605
4.2 Vie di alimentazione della glico I polisaccaridi e i disaccaridi della dieta v			È possibile regolare la quantità e l'attività catalitica di un enzima	605
idrolizzati a monosaccaridi Il glicogeno e l'amido endogeni vengoi	575		l più comuni punti di regolazione nella cellula sono le reazioni lontane dall'equilibrio	608
degradati per fosforolisi	575		I nucleotidi adeninici hanno un ruolo speciale nella regolazione metabolica	610
Altri monosaccaridi entrano nella glicol in diversi punti	iisi 577	15.2	Analisi del controllo metabolico	612

© 978-88-08-2**6148**-9 Indice XIX

	Si può determinare sperimentalmente l'effetto di ciascun enzima sul flusso attraverso una via metabolica	612	La glicogeno fosforilasi è regolata allostericamente e ormonalmente	636
	Il coefficiente di controllo del flusso è una misura	012	Anche la glicogeno sintasi è regolata mediante fosforilazione e defosforilazione	638
	degli effetti di variazioni dell'attività enzimatica sul flusso dei metaboliti attraverso una via	612	La glicogeno sintasi chinasi 3 media alcune delle azioni dell'insulina	639
	metabolica Il coefficiente di elasticità è correlato alla risposta dell'enzima alle variazioni della concentrazione	613	La fosfoproteina fosfatasi 1 ha un ruolo centrale nel metabolismo del glicogeno	640
	dei metaboliti o dei composti regolatori	613	Segnali allosterici e ormonali coordinano il metabolismo dei carboidrati	640
вох	(15.1 METODI II controllo metabolico: aspetti quantitativi II coefficiente della risposta esprime l'effetto	614	Il metabolismo dei carboidrati e quello dei lipidi sono integrati da meccanismi ormonali	
	di un fattore esterno sul flusso di una via metabolica	614	e allosterici Termini chiave	641 642
	L'analisi del controllo metabolico è stata applicata al metabolismo dei carboidrati con risultati sorprendenti	615	Ulteriori letture Problemi	643 645
	L'analisi del controllo metabolico suggerisce un metodo generale per aumentare il flusso attraverso una via metabolica		CAPITOLO 16 I ciclo dell'acido citrico	
15.3	Regolazione coordinata della glicolisi	1/	6.1 Produzione di acetil-CoA	
	e della gluconeogenesi Gli isozimi dell'esochinasi del muscolo	617	(acetato attivato)	649
	e del fegato sono regolati differentemente dal loro prodotto, il glucosio 6-fosfato	617	Il piruvato viene ossidato ad acetil-CoA e CO ₂ Il complesso della piruvato deidrogenasi	650
ВОХ	15.2 Isozimi: proteine differenti che catalizzano la stessa reazione	618	richiede cinque coenzimi distinti Il complesso della piruvato deidrogenasi	650
	L'esochinasi IV (glucochinasi) e la glucosio 6-fosfatasi sono regolate a livello trascrizionale	619	è costituito da tre enzimi Mediante l'incanalamento dei substrati,	651
	La fosfofruttochinasi-1 e la fruttosio 1,6-bisfosfatasi		gli intermedi non abbandonano mai la superficie	652
	sono reciprocamente regolate	619	dell'enzima	052
	sono reciprocamente regolate Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1		dell'enzima 6.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza	654
	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore	621	6.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica	654 654
	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito	621 622 B	5.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe OX 16.1 Proteine enzimatiche che fanno più di	654 654 656
	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi	621 622 B	5.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe SOX 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" SOX 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare	654 654 656 658
	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi di regolazione La regolazione a livello trascrizionale della glicolisi	621 622 622 B 624	5.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe OX 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" OX 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare confusione OX 16.3 Il citrato: una molecola simmetrica	654 654 656 658
	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi di regolazione La regolazione a livello trascrizionale della glicolisi e della gluconeogenesi modifica il numero delle proteine enzimatiche	621 622 622 B 624	5.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe 5.0X 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" 5.0X 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare confusione 5.0X 16.3 Il citrato: una molecola simmetrica che reagisce in modo asimmetrico L'energia delle ossidazioni che avvengono	654 654 656 658 661 664
вох	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi di regolazione La regolazione a livello trascrizionale della glicolisi e della gluconeogenesi modifica il numero	621 622 622 B 624	5.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe 5.0X 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" 5.0X 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare confusione 6.0X 16.3 Il citrato: una molecola simmetrica che reagisce in modo asimmetrico L'energia delle ossidazioni che avvengono nel ciclo viene efficacemente conservata	654 654 656 658
	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi di regolazione La regolazione a livello trascrizionale della glicolisi e della gluconeogenesi modifica il numero delle proteine enzimatiche 15.3 MEDICINA Mutazioni genetiche che portano a rare forme di diabete Il metabolismo del glicogeno	621 622 B 622 B 624 B	5.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe SOX 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" SOX 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare confusione SOX 16.3 Il citrato: una molecola simmetrica che reagisce in modo asimmetrico L'energia delle ossidazioni che avvengono nel ciclo viene efficacemente conservata Perché l'ossidazione dell'acetato è così complicata? I componenti del ciclo dell'acido citrico	654 656 658 661 664 665 665
	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi di regolazione La regolazione a livello trascrizionale della glicolisi e della gluconeogenesi modifica il numero delle proteine enzimatiche 15.3 MEDICINA Mutazioni genetiche che portano a rare forme di diabete	621 622 622 B 624 B	5.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe SOX 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" SOX 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare confusione SOX 16.3 Il citrato: una molecola simmetrica che reagisce in modo asimmetrico L'energia delle ossidazioni che avvengono nel ciclo viene efficacemente conservata Perché l'ossidazione dell'acetato è così complicata?	654654656658661664665
	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi di regolazione La regolazione a livello trascrizionale della glicolisi e della gluconeogenesi modifica il numero delle proteine enzimatiche 15.3 MEDICINA Mutazioni genetiche che portano a rare forme di diabete Il metabolismo del glicogeno negli animali La demolizione del glicogeno è catalizzata	621 622 622 B 624 B 624 627	5.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe 5.0X 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" 5.0X 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare confusione 5.0X 16.3 Il citrato: una molecola simmetrica che reagisce in modo asimmetrico L'energia delle ossidazioni che avvengono nel ciclo viene efficacemente conservata Perché l'ossidazione dell'acetato è così complicata? I componenti del ciclo dell'acido citrico sono importanti intermedi biosintetici Le vie anaplerotiche riforniscono di intermedi	654 654 656 658 661 665 665
	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi di regolazione La regolazione a livello trascrizionale della glicolisi e della gluconeogenesi modifica il numero delle proteine enzimatiche 15.3 MEDICINA Mutazioni genetiche che portano a rare forme di diabete Il metabolismo del glicogeno negli animali La demolizione del glicogeno è catalizzata dalla glicogeno fosforilasi Il glucosio 1-fosfato può entrare nella glicolisi oppure essere rilasciato nel sangue sotto forma di glucosio dal fegato	621 622 622 B 624 624 627 628 629	5.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe OX 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" OX 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare confusione OX 16.3 Il citrato: una molecola simmetrica che reagisce in modo asimmetrico L'energia delle ossidazioni che avvengono nel ciclo viene efficacemente conservata Perché l'ossidazione dell'acetato è così complicata? I componenti del ciclo dell'acido citrico sono importanti intermedi biosintetici Le vie anaplerotiche riforniscono di intermedi il ciclo dell'acido citrico La biotina nella piruvato carbossilasi trasporta gruppi CO ₂ 5.3 Regolazione del ciclo dell'acido citrico	654 654 656 658 661 665 665 666 667
15.4	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi di regolazione La regolazione a livello trascrizionale della glicolisi e della gluconeogenesi modifica il numero delle proteine enzimatiche 15.3 MEDICINA Mutazioni genetiche che portano a rare forme di diabete Il metabolismo del glicogeno negli animali La demolizione del glicogeno è catalizzata dalla glicogeno fosforilasi Il glucosio 1-fosfato può entrare nella glicolisi oppure essere rilasciato nel sangue sotto forma di glucosio dal fegato L'UDP-glucosio, uno zucchero legato a un nucleotide, dona il glucosio per la sintesi del glicogeno	621 622 622 B 624 624 627 628 629	Sequencia del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe SOX 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" SOX 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare confusione SOX 16.3 Il citrato: una molecola simmetrica che reagisce in modo asimmetrico L'energia delle ossidazioni che avvengono nel ciclo viene efficacemente conservata Perché l'ossidazione dell'acetato è così complicata? I componenti del ciclo dell'acido citrico sono importanti intermedi biosintetici Le vie anaplerotiche riforniscono di intermedi il ciclo dell'acido citrico La biotina nella piruvato carbossilasi trasporta gruppi CO ₂	654 656 658 661 664 665 666 667
15.4	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi di regolazione La regolazione a livello trascrizionale della glicolisi e della gluconeogenesi modifica il numero delle proteine enzimatiche 15.3 MEDICINA Mutazioni genetiche che portano a rare forme di diabete Il metabolismo del glicogeno negli animali La demolizione del glicogeno è catalizzata dalla glicogeno fosforilasi Il glucosio 1-fosfato può entrare nella glicolisi oppure essere rilasciato nel sangue sotto forma di glucosio dal fegato L'UDP-glucosio, uno zucchero legato a un nucleotide, dona il glucosio per la sintesi del glicogeno 15.4 MEDICINA Carl e Gerty Cori: i pionieri del metabolismo del glicogeno e delle disfunzioni	621 622 622 B 624 624 627 628 629 629	5.2 Reazioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe 5.0X 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" 5.0X 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare confusione 5.0X 16.3 Il citrato: una molecola simmetrica che reagisce in modo asimmetrico L'energia delle ossidazioni che avvengono nel ciclo viene efficacemente conservata Perché l'ossidazione dell'acetato è così complicata? I componenti del ciclo dell'acido citrico sono importanti intermedi biosintetici Le vie anaplerotiche riforniscono di intermedi il ciclo dell'acido citrico La biotina nella piruvato carbossilasi trasporta gruppi CO ₂ 5.3 Regolazione del ciclo dell'acido citrico La produzione di acetil-CoA da parte del complesso della piruvato deidrogenasi è regolata	654 654 656 658 661 665 665 666 667 669 670
15.4	Il fruttosio 2,6-bisfosfato è un potente regolatore allosterico della PFK-1 e della FBPasi-1 Lo xilulosio 5-fosfato è un importante regolatore del metabolismo dei carboidrati e dei grassi L'enzima glicolitico piruvato chinasi è inibito allostericamente dall'ATP La conversione del piruvato in fosfoenolpiruvato nella gluconeogenesi è sottoposta a molti tipi di regolazione La regolazione a livello trascrizionale della glicolisi e della gluconeogenesi modifica il numero delle proteine enzimatiche 15.3 MEDICINA Mutazioni genetiche che portano a rare forme di diabete Il metabolismo del glicogeno negli animali La demolizione del glicogeno è catalizzata dalla glicogeno fosforilasi Il glucosio 1-fosfato può entrare nella glicolisi oppure essere rilasciato nel sangue sotto forma di glucosio dal fegato L'UDP-glucosio, uno zucchero legato a un nucleotide, dona il glucosio per la sintesi del glicogeno	621 622 622 B 624 624 627 628 629	Securioni del ciclo dell'acido citrico Nel ciclo dell'acido citrico la sequenza delle reazioni ha una logica chimica Il ciclo dell'acido citrico ha otto tappe SOX 16.1 Proteine enzimatiche che fanno più di un lavoro: le proteine "moonlighting" SOX 16.2 Sintasi e sintetasi; ligasi e liasi; chinasi, fosfatasi e fosforilasi. Questi nomi possono creare confusione SOX 16.3 Il citrato: una molecola simmetrica che reagisce in modo asimmetrico L'energia delle ossidazioni che avvengono nel ciclo viene efficacemente conservata Perché l'ossidazione dell'acetato è così complicata? I componenti del ciclo dell'acido citrico sono importanti intermedi biosintetici Le vie anaplerotiche riforniscono di intermedi il ciclo dell'acido citrico La biotina nella piruvato carbossilasi trasporta gruppi CO ₂ SA Regolazione del ciclo dell'acido citrico La produzione di acetil-CoA da parte del complesso della piruvato deidrogenasi è regolata da meccanismi sia allosterici che covalenti Il ciclo dell'acido citrico è regolato a livello	654 654 656 658 661 665 665 666 667 669 670

XX Indice © 978-88-08-2**6148-**9

16.4	Il ciclo del gliossilato	673	CAPITOLO 18	
	Il ciclo del gliossilato produce composti a quattro atomi di carbonio a partire da acetato	673	Ossidazione degli amminoacidi e produzione dell'urea	
	Il ciclo dell'acido citrico e il ciclo del gliossilato sono regolati in modo coordinato	674	18.1 Destino metabolico dei gruppi	
	Termini chiave	675	amminici	711
	Ulteriori letture	676	Le proteine della dieta vengono degradate	
	Problemi	677	enzimaticamente ad amminoacidi	712
	CARITOLO 47		Il piridossal fosfato partecipa al trasferimento dei gruppi α -amminici all' α -chetoglutarato	715
	CAPITOLO 17 tabolismo degli acidi grassi		Il glutammato rilascia il suo gruppo amminico sotto forma di ammoniaca nel fegato	716
			La glutammina trasporta l'ammoniaca	
17.1	Digestione, mobilizzazione		nel torrente circolatorio	717
	e trasporto degli acidi grassi	684	L'alanina trasporta lo ione ammonio dal muscolo scheletrico al fegato	718
	I grassi della dieta vengono assorbiti nell'intestino tenue	684	L'ammoniaca è tossica per gli animali	719
	Gli ormoni mobilizzano le riserve di triacilgliceroli	685	18.2 Escrezione dell'azoto e ciclo dell'urea	720
	Gli acidi grassi sono attivati e trasportati nei mitocondri	686	L'urea viene prodotta dall'ammoniaca in quattro tappe enzimatiche	720
17.2	Ossidazione degli acidi grassi	688	l cicli dell'acido citrico e dell'urea possono essere	
	La β ossidazione degli acidi grassi saturi		collegati	722
	avviene in quattro reazioni	689	BOX 18.1 MEDICINA Valutazione di un danno tissutale	724
	Le quattro reazioni della β ossidazione si ripetono formando acetil-CoA e ATP	691	L'attività del ciclo dell'urea è regolata a due livelli	724
BO	(17.1 Gli orsi ossidano i loro grassi durante	071	l collegamenti tra le vie metaboliche riducono i costi energetici della sintesi dell'urea	724
	il letargo L'acetil-CoA può essere ossidato ulteriormente	692	l difetti genetici del ciclo dell'urea possono essere letali	725
	nel ciclo dell'acido citrico	692	18.3 Vie di degradazione degli amminoacidi	726
	L'ossidazione degli acidi grassi insaturi richiede altre due reazioni	692	Alcuni amminoacidi sono convertiti in glucosio, altri in corpi chetonici	726
	L'ossidazione completa degli acidi grassi con numero dispari di atomi di carbonio richiede		Alcuni cofattori enzimatici hanno funzioni importanti nel catabolismo degli amminoacidi	726
201	altre tre reazioni	694	Sei amminoacidi vengono degradati a piruvato	730
BO	(17.2 Il coenzima B ₁₂ : una soluzione radicale a un problema complesso	695	Sette amminoacidi vengono degradati ad acetil-CoA	733
	L'ossidazione degli acidi grassi è regolata rigidamente	698	In alcuni soggetti il catabolismo della fenilalanina è geneticamente difettoso	733
	I fattori di trascrizione attivano la sintesi delle proteine deputate al catabolismo dei lipidi	698	Cinque amminoacidi sono convertiti in α-chetoglutarato	736
	Difetti genetici negli enzimi acil-CoA deidrogenasi provocano gravi patologie	698	Quattro amminoacidi sono convertiti in	
	La β ossidazione avviene anche nei perossisomi	699	succinil-CoA	737
	I perossisomi e i gliossisomi delle piante utilizzano l'acetil-CoA ottenuto dalla	0,5,5	BOX 18.2 MEDICINA Indagini scientifiche risolvono il mistero di un assassinio	739
	β ossidazione come precursore biosintetico Gli enzimi della β ossidazione dei differenti	700	Gli amminoacidi a catena ramificata non vengono degradati nel fegato	740
	organelli hanno seguito un'evoluzione		L'asparagina e l'aspartato vengono degradati a ossalacetato	7/1
	divergente	700		741
	La ω ossidazione degli acidi grassi avviene nel reticolo endoplasmatico	701	Termini chiave Ulteriori letture	742
	L'acido fitanico subisce un' α ossidazione	701		742
	nei perossisomi	701	Problemi	743
17.3	I corpi chetonici	703	CAPITOLO 19	
	I corpi chetonici formati nel fegato sono esportati in altri organi come fonte di energia	703	Fosforilazione ossidativa e fotofosforilazione	
	Il diabete e il digiuno prolungato provocano una sovrapproduzione di corpi chetonici	704		
	Termini chiave	705	 LA FOSFORILAZIONE OSSIDATIVA 	748
	Ulteriori letture	705	19.1 Il flusso degli elettroni nei mitocondri	748
	Problemi	707	Gli elettroni sono incanalati verso accettori universali	750
		, 0 /	arn versan	, 50

© 978-88-08-2**6148**-9 Indice XXI

	Gli elettroni passano attraverso una serie di trasportatori legati alla membrana	751		Le mutazioni del DNA mitocondriale si accumulano durante l'intera vita degli organismi	783
	I trasportatori di elettroni funzionano sotto forma di complessi multienzimatici	754		Alcune mutazioni nei genomi mitocondriali causano malattie	
	I complessi mitocondriali possono associarsi in respirasomi	758		Il diabete può essere causato da difetti dei mitocondri delle cellule pancreatiche β	784 785
	L'energia associata al trasporto degli elettroni viene efficientemente conservata sotto forma di un gradiente di protoni	759			703
	Durante la fosforilazione ossidativa si generano specie reattive dell'ossigeno	761	10.6	FOTOSINTESI: LA CATTURA DELL'ENERGIA LUMINOSA Caratteristiche generali	786
	l mitocondri delle piante hanno meccanismi alternativi per ossidare il NADH	762	19.0	della fotofosforilazione La fotosintesi delle piante avviene nei cloroplasti	786 787
ВОХ	19.1 Vie respiratorie alternative e piante maleodoranti che producono calore	763		La luce produce un flusso di elettroni nei cloroplasti	787
19.2	La sintesi dell'ATP	764	40.7	L'assorbimento della luce	
	L'ATP sintasi possiede due domini funzionali: $F_{o}edF_{1}$	766	19.7	Le clorofille assorbono l'energia della luce per la fotosintesi	788 788
	L'ATP viene stabilizzato più dell'ADP sulla superficie dell'enzima F ₁	767		Pigmenti accessori allargano lo spettro di assorbimento della luce	790
	Il gradiente di protoni favorisce il rilascio di ATP dalla superficie dell'enzima	768		La clorofilla incanala l'energia assorbita verso i centri di reazione tramite il trasferimento	
	Ogni subunità β dell'ATP sintasi può assumere tre diverse conformazioni	768		di eccitoni	791
	La catalisi rotazionale è alla base del meccanismo		19.8	L'evento fotochimico centrale: il flusso	=00
	di sintesi dell'ATP mediato dall'alterazione del legame	770		di elettroni indotto dalla luce I batteri hanno solo uno dei due distinti centri di reazione fotochimica	793 793
	In che modo il flusso protonico attraverso il complesso F _o produce un movimento rotatorio?	771		Fattori cinetici e termodinamici evitano la dissipazione dell'energia per conversione	7 7 3
	L'accoppiamento chemiosmotico permette stechiometrie espresse da numeri non interi tra il consumo di ossigeno e la sintesi di ATP	771		interna Nelle piante due centri di reazione agiscono	795
ROY	19.2 METODI II microscopio a forza atomica serve	//1		in sequenza	796
БОЛ	a visualizzare le proteine di membrana La forza motrice protonica fornisce energia	772		Le clorofille antenna sono strettamente integrate con i trasportatori di elettroni	797
	al trasporto attivo Sistemi navetta (shuttle) trasferiscono	773		ll complesso del citocromo $b_6 f$ unisce i fotosistemi ll e l	798
40.0	gli equivalenti riducenti del NADH citosolico nei mitocondri	774		ll flusso ciclico degli elettroni tra PSI e complesso del citocromo $b_6 f$ aumenta la produzione di ATP rispetto a quella del NADPH	798
19.3	Regolazione della fosforilazione ossidativa	776		Le transizioni di stato cambiano la distribuzione dell'LHCII tra i due fotosistemi	800
	La fosforilazione ossidativa è regolata dal fabbisogno energetico cellulare	776		L'acqua viene scissa dal complesso che libera ossigeno	801
	Una proteina inibitrice impedisce l'idrolisi dell'ATP durante l'ipossia L'ipossia provoca la produzione delle ROS	776	19.9	Sintesi di ATP accoppiata alla fotofosforilazione	803
	e diverse risposte adattative Le vie di produzione dell'ATP sono regolate	777		Il flusso degli elettroni e la fosforilazione sono accoppiati da un gradiente protonico	803
	in modo coordinato	778		È stata determinata una stechiometria approssimativa della fotofosforilazione	804
19.4	I mitocondri nella termogenesi, nella sintesi degli steroidi	770		L'ATP sintasi nei cloroplasti è simile a quella nei mitocondri	805
	e nell'apoptosi Nel tessuto adiposo bruno i mitocondri	779	19.10	Evoluzione della fotosintesi	
	disaccoppiati producono calore	779		ossigenica	805
	Le P-450 ossigenasi mitocondriale catalizzano l'ossidrilazione degli steroidi	779		I cloroplasti si sono evoluti da antichi batteri fotosintetici	805
	l mitocondri hanno un ruolo primario nella fase iniziale dell'apoptosi	781		Nel batterio alofilo <i>Halobacterium</i> una singola proteina assorbe la luce e pompa i protoni per produrre ATP	806
19.5	I geni mitocondriali: la loro origine			Termini chiave	808
	e gli effetti delle mutazioni	782		Ulteriori letture	809
	I mitocondri si sono evoluti da batteri endosimbiotici	782		Problemi	811

XXII Indice © 978-88-08-2**6148-**9

	LAPITOLO 20 osintesi dei carboidrati nelle piante		L'acido grasso sintasi dei mammiferi ha molteplici siti attivi	852
	ei batteri		L'acido grasso sintasi lega gruppi acetilici e malonilici	854
20.1	Sintesi fotosintetica dei carboidrati I plastidi sono organelli presenti unicamente	817	Le reazioni dell'acido grasso sintasi si ripetono fino alla formazione del palmitato	856
	nelle cellule delle piante e delle alghe L'organicazione dell'anidride carbonica avviene	818	In molti organismi la sintesi degli acidi grassi avviene nel citosol, mentre nelle piante avviene	057
	in tre fasi	819	nei cloroplasti	857
	La sintesi di ogni triosio fosfato dalla ${\rm CO_2}$ richiede sei NADPH e nove ATP	826	L'acetato viene trasportato fuori dai mitocondri sotto forma di citrato	858
	Un sistema di trasporto esporta i triosi fosfato dai cloroplasti e importa fosfato	827	La biosintesi degli acidi grassi è strettamente regolata	859
	Quattro enzimi del ciclo di Calvin sono indirettamente attivati dalla luce	828	Gli acidi grassi saturi a catena lunga sono sintetizzati dal palmitato	860
20.2	La fotorespirazione e le vie C ₄ e CAM	830	La desaturazione degli acidi grassi richiede una ossidasi a funzione mista	861
	La fotorespirazione dipende dall'attività ossigenasica della rubisco	830	BOX 21.1 MEDICINA Ossidasi a funzione mista, gli enzimi citocromo P-450 e le overdosi da farmaci	861
	Il recupero del fosfoglicolato è costoso	831	Gli eicosanoidi si formano da acidi grassi	001
	Nelle piante C_4 la fissazione della CO_2		poliinsaturi a venti atomi di carbonio	863
	e l'attività della rubisco sono fisicamente separate	833	21.2 Biosintesi dei triacilgliceroli I triacilgliceroli e i glicerofosfolipidi sono	866
BO	(20.1 L'ingegnerizzazione genetica degli organismi fotosintetici aumenterà la loro efficienza?	834	sintetizzati a partire da precursori comuni	866
	Nelle piante CAM la cattura di CO ₂ e l'azione della rubisco sono separate nel tempo	836	Negli animali la biosintesi dei triacilgliceroli è regolata dagli ormoni	866
20.3	Biosintesi dell'amido e del saccarosio	836	Il tessuto adiposo genera il glicerolo 3-fosfato mediante la gliceroneogenesi	868
	L'ADP-glucosio è il substrato per la sintesi dell'amido nelle piante e per la sintesi del glicogeno nei batteri	836	I tiazolidinedioni sono farmaci efficaci contro il diabete di tipo 2 perché aumentano la gliceroneogenesi	869
	L'UDP-glucosio è il substrato per la sintesi	027	21.3 Biosintesi dei fosfolipidi di membrana	870
	del saccarosio nel citosol delle cellule vegetali La conversione dei triosi fosfato in saccarosio	837	Le cellule utilizzano due strategie per legare le teste polari ai fosfolipidi	870
20.4	e amido è strettamente regolata Sintesi dei polisaccaridi della parete	838	La sintesi dei fosfolipidi in <i>E. coli</i> utilizza	071
	cellulare: cellulosa delle piante e peptidoglicani dei batteri	839	il CDP-diacilglicerolo Gli eucarioti sintetizzano fosfolipidi anionici dal CDP-diacilglicerolo	871 873
	La cellulosa viene sintetizzata da strutture		Negli eucarioti le vie di sintesi della fosfatidilserina,	0/3
	sopramolecolari nella membrana plasmatica Gli oligosaccaridi legati ai lipidi sono precursori	840	della fosfatidiletanolammina e della fosfatidilcolina sono collegate	873
20.5	per la sintesi della parete cellulare batterica Integrazione del metabolismo	841	La sintesi dei plasmalogeni richiede la formazione di legami etere con alcoli a catena lunga	874
	dei carboidrati nelle cellule vegetali	843	Le vie di sintesi degli sfingolipidi	
	Nei semi in germinazione la gluconeogenesi converte grassi e proteine in glucosio	843	e dei glicerofosfolipidi hanno precursori e alcuni meccanismi in comune	875
	Intermedi comuni collegano le vie metaboliche nei diversi organelli	844	l lipidi polari vengono trasferiti a specifiche membrane cellulari	875
	Termini chiave	845	21.4 Colesterolo, steroidi e isoprenoidi:	
	Ulteriori letture	845	biosintesi, regolazione e trasporto	877
	Problemi	847	Il colesterolo è sintetizzato a partire dall'acetil-CoA in quattro tappe	878
			Il colesterolo ha diversi destini metabolici	882
	CAPITOLO 21 osintesi dei lipidi		Il colesterolo e altri lipidi vengono trasportati dalle lipoproteine plasmatiche	882
21.1	Biosintesi degli acidi grassi		BOX 21.2 MEDICINA Dagli alleli dell'apolipoproteina E si può prevedere l'incidenza del morbo di Alzheimer	884
	e degli eicosanoidi Il malonil-CoA si forma dall'acetil-CoA	851	Gli esteri del colesterolo entrano nella cellula per endocitosi mediata da un recettore	885
	e dal bicarbonato	851	L'HDL effettua il trasporto inverso del colesterolo	887
	Gli acidi grassi vengono sintetizzati mediante		La sintesi e il trasporto del colesterolo sono	

851

regolati a diversi livelli

887

una sequenza di reazioni ripetute

Indice XXIII © 978-88-08-2**6148**-9

Alexandra di calle con alexino a del control di con			
Alterazioni nella regolazione del metabolismo del colesterolo possono generare patologie		22.4 Biosintesi e degradazione dei nucleotic La sintesi <i>de novo</i> delle purine inizia dal PRPP	a
cardiovascolari BOX 21.3 MEDICINA L'ipotesi dei lipidi e lo sviluppo	889	La biosintesi dei nucleotidi purinici è regolata	
delle statine	890	per inibizione retroattiva I nucleotidi pirimidinici sono prodotti a partire	
Il trasporto inverso del colesterolo operato dalle HDL contrasta la formazione delle placche	000	da aspartato, PRPP e carbamil fosfato La biosintesi dei nucleotidi pirimidinici è regolata	
e l'insorgenza dell'aterosclerosi Gli ormoni steroidei si formano per rottura	892	tramite inibizione retroattiva I nucleosidi monofosfato sono convertiti	
della catena laterale e ossidazione del colesterolo Gli intermedi della sintesi del colesterolo possono	892	in nucleosidi trifosfato	
avere molti destini metabolici alternativi	893	l ribonucleotidi sono i precursori dei deossiribonucleotidi	
Termini chiave	894	Il timidilato deriva dal dCDP e dal dUMP	
Ulteriori letture Problemi	894 896	La degradazione delle purine e delle pirimidine produce rispettivamente acido urico e urea	
	090	Le basi puriniche e pirimidiniche sono riciclate mediante le vie di salvataggio	
CAPITOLO 22	. 1.	La sovrapproduzione di acido urico causa la gotta	
Biosintesi degli amminoacidi, dei nucleot e delle molecole correlate	ıdı	Molti agenti chemioterapici colpiscono enzimi delle vie biosintetiche dei nucleotidi	
Una annonda almast I. P I. P		Termini chiave	
2.1 Uno sguardo al metabolismo dell'azoto Il ciclo dell'azoto crea una quantità di azoto	901	Ulteriori letture	
disponibile per i processi biologici	901	Problemi	
OX 22.1 Gli insoliti stili di vita di organismi poco noti ma molto diffusi	902	CAPITOLO 23	
L'azoto viene fissato dagli enzimi del complesso della nitrogenasi	904	Regolazione ormonale e integrazione del metabolismo nei mammiferi	
L'ammoniaca viene incorporata nelle biomolecole tramite il glutammato e la glutammina	908		
La glutammina sintetasi è il principale sito di regolazione del metabolismo dell'azoto	909	23.1 Gli ormoni: strutture diverse per funzioni diverse	
Diverse classi di reazioni hanno funzioni speciali nella biosintesi degli amminoacidi e dei nucleotidi	910	La scoperta e la purificazione di un ormone richiedono la messa a punto di un dosaggio	
Biosintesi degli amminoacidi	911	biologico BOX 23.1 MEDICINA Come si può scoprire un ormone?	
L'α-chetoglutarato è il precursore del glutammato, della glutammina, della prolina e dell'arginina	912	La difficile via di purificazione dell'insulina	
La serina, la glicina e la cisteina derivano dal		Gli ormoni agiscono attraverso specifici recettori cellulari ad alta affinità	
3-fosfoglicerato	914	Gli ormoni sono chimicamente diversi	
Tre amminoacidi non essenziali e sei amminoacidi essenziali vengono sintetizzati a partire	010	Il rilascio degli ormoni è regolato da una gerarchia di segnali ormonali e nervosi	
dall'ossalacetato e dal piruvato Il corismato è un intermedio chiave nella sintesi	918	23.2 Metabolismi tessuto-specifici: la divisione del lavoro	
del triptofano, della fenilalanina e della tirosina La biosintesi dell'istidina utilizza precursori della	918	Il fegato modifica e distribuisce le sostanze	
biosintesi della purina	920	nutrienti Il tessuto adiposo immagazzina e distribuisce	
La biosintesi degli amminoacidi è regolata allostericamente	920	gli acidi grassi	
3 Molecole derivate dagli amminoacidi	924	Il tessuto adiposo bruno è termogenico	
La glicina è il precursore delle porfirine	924	I muscoli utilizzano l'ATP per compiere un lavoro meccanico	
L'eme è l'origine dei pigmenti biliari	924	BOX 23.2 Creatina e creatina chinasi: preziosi aiuti	
OX 22.2 MEDICINA Reevampiri	926	diagnostici e amici dei culturisti	
Gli amminoacidi sono i precursori della creatina e del glutatione	927	Il cervello utilizza energia per trasmettere impulsi elettrici	
l D-amminoacidi si trovano soprattutto nei batteri	928	Il sangue trasporta ossigeno, metaboliti e ormoni	
Gli amminoacidi aromatici sono precursori di molte sostanze prodotte dalle piante	929	23.3 Regolazione ormonale del metabolismo energetico	
Le ammine biologiche sono prodotti della		L'insulina segnala alti livelli di glucosio nel sangue	
decarbossilazione ossidativa degli amminoacidi	929	Le cellule $\boldsymbol{\beta}$ del pancreas secernono insulina	
L'arginina è il precursore della sintesi biologica dell'ossido di azoto	929	in risposta a un aumento della concentrazione di glucosio nel sangue	

XXIV Indice © 978-88-08-2**6148-**9

	ll glucagone risponde a bassi livelli di glucosio nel sangue	977	Il DNA disavvolto è definito topologicamente dal numero di legame	1012
	Durante il digiuno il metabolismo si modifica per rifornire il cervello di sostanze nutrienti	978	Le topoisomerasi catalizzano le variazioni del numero di legame del DNA	1014
	L'adrenalina segnala un'attività imminente Il cortisolo segnala condizioni di stress, compresa	979	BOX 24.1 MEDICINA Alcune malattie vengono curate inibendo le topoisomerasi	1016
	una bassa concentrazione di glucosio	980	La compattezza del DNA richiede una speciale forma di superavvolgimento	1017
	Il diabete mellito è provocato da un difetto nella produzione di insulina o nella sua azione	981	24.3 Struttura dei cromosomi	1018
23.4	Obesità e regolazione della massa		La cromatina è costituita da DNA e proteine	1018
	corporea	983	Gli istoni sono piccole proteine basiche	1019
	Il tessuto adiposo svolge importanti funzioni endocrine	983	I nucleosomi sono le unità organizzative fondamentali della cromatina	1020
	La leptina stimola la produzione dell'ormone peptidico anoressigenico	984	I nucleosomi sono compattati in strutture di ordine via via superiore	1022
	La leptina innesca una cascata di segnali che regola l'espressione genica	985	BOX 24.2 MEDICINA Epigenetica, struttura dei nucleosomi e varianti istoniche	1023
	Il sistema della leptina potrebbe essersi evoluto per regolare la risposta al digiuno	986	Le strutture condensate dei cromosomi sono mantenute dalle proteine SMC	1025
	L'insulina agisce sul nucleo arcuato dell'ipotalamo,		Anche il DNA batterico è altamente organizzato	1028
	regolando l'assunzione di cibo e il processo di conservazione dell'energia	986	Termini chiave	1028
	L'adiponectina agisce tramite l'AMPK e aumenta	500	Ulteriori letture	1029
	la sensibilità all'insulina L'attività di mTORC1 coordina la crescita cellulare	986	Problemi	1029
	con il rifornimento di sostanze nutrienti		CAPITOLO 25	
	e di energia	988	Metabolismo del DNA	
	La dieta regola l'espressione di geni fondamentali per il mantenimento della massa corporea	988	25.1 Replicazione del DNA	1035
	Il comportamento alimentare a breve termine è influenzato dalla grelina e dal PYY ₃₋₃₆	990	La replicazione del DNA è governata	1005
	I simbionti microbici dell'intestino influenzano	,,,,	da un insieme di regole fondamentali	1035
	il metabolismo energetico e l'adipogenesi	990	II DNA è degradato dalle nucleasi II DNA viene sintetizzato dalle DNA polimerasi	1037 1037
23.5	Obesità, sindrome metabolica		Il processo di replicazione è molto accurato	1037
	e diabete di tipo 2	991	E. coli possiede almeno cinque DNA polimerasi	1040
	Nel diabete di tipo 2 i tessuti diventano insensibili all'insulina	991	La replicazione del DNA richiede numerosi enzimi e fattori proteici	1041
	Il diabete di tipo 2 viene trattato con la dieta, con l'esercizio fisico, ma anche farmacologicamente	993	La replicazione del cromosoma di <i>E. coli</i> procede in fasi successive	
	Termini chiave	994	La replicazione nelle cellule eucariotiche	
	Ulteriori letture	994	è simile ma più complessa	1048
	Problemi	996	Le DNA polimerasi virali fungono da bersagli per la terapia antivirale	1050
			25.2 Riparazione del DNA	1051
P	ARTE 3		Le mutazioni sono correlate al cancro	1051
	VIE DELL'INFORMAZIONE		Tutte le cellule possiedono sistemi multipli di riparazione del DNA	1052
	CAPITOLO 24		L'interazione di una forcella di replicazione con DNA danneggiato può portare alla sintesi	
	ni e cromosomi		di DNA a livello della lesione	1058
24.1	Elementi cromosomici	1003	BOX 25.1 MEDICINA Riparazione del DNA e cancro	1060
	I geni sono segmenti di DNA che codificano	1005	25.3 Ricombinazione del DNA	1062
	catene polipeptidiche e RNA Le molecole di DNA sono molto più lunghe	1003	La ricombinazione omologa dei batteri ha la funzione di riparare il DNA	1062
	degli involucri che le contengono I geni e i cromosomi degli eucarioti sono molto	1004	La ricombinazione omologa degli eucarioti è necessaria per la corretta segregazione cromosomica durante la meiosi	1064
	complessi	1008	La ricombinazione durante la meiosi inizia	1004
24.2	Superavvolgimento del DNA	1009	con la rottura della doppia elica	1068
	La maggior parte del DNA cellulare è parzialmente disavvolto	1011	BOX 25.2 MEDICINA Perché è importante un'adeguata segregazione cromosomica	1068

Indice XXV © 978-88-08-2**6148**-9

	La ricombinazione sito-specifica determina riarrangiamenti del DNA in punti precisi	1070	Alcuni RNA virali vengono replicati da RNA polimerasi dipendenti dall'RNA	1116
	Gli elementi genetici trasponibili si spostano da una posizione all'altra	1070	La sintesi dell'RNA offre importanti spunti sulla biochimica dell'evoluzione	1116
	I geni delle immunoglobuline si assemblano per ricombinazione	1073	BOX 26.3 METODI II metodo SELEX per generare polimeri di RNA con nuove funzioni	1119
	Termini chiave	1076	BOX 26.4 Un universo a RNA in continua espansione, pieno di RNA TUF	1120
	Ulteriori letture	1076	Termini chiave	1122
	Problemi	1077	Ulteriori letture	1122
	A DITOLO 26		Problemi	1123
	CAPITOLO 26 etabolismo dell'RNA			
	Cintari dall'ONIA din condenda dal DNIA	1000	CAPITOLO 27 Metabolismo delle proteine	
26.1	Sintesi dell'RNA dipendente dal DNA L'RNA viene sintetizzato dalle RNA polimerasi	1082 1082	Metabolishio delle proteine	
	La sintesi dell'RNA inizia a livello dei promotori	1084	27.1 Il codice genetico	1127
	La trascrizione è regolata a diversi livelli	1085	Il codice genetico è stato decifrato utilizzando	
ВОХ	26.1 METODI L'RNA polimerasi lascia la sua		stampi di mRNA artificiali BOX 27.1 Le eccezioni che confermano la regola:	1128
	impronta sul promotore Sequenze specifiche segnalano la terminazione	1086	le variazioni naturali del codice genetico	1131
	della sintesi dell'RNA	1087	L''oscillazione" permette ad alcuni tRNA di riconoscere più di un codone	1133
	Le cellule eucariotiche hanno nel nucleo tre tipi di RNA polimerasi	1088	Il codice genetico è resistente alle mutazioni	1134
	L'RNA polimerasi II richiede molti altri fattori proteici per la sua attività	1088	Lo slittamento del quadro di lettura e l'editing dell'RNA influenzano la lettura del codice	1135
	L'RNA polimerasi DNA-dipendente può essere		27.2 La sintesi proteica	1137
	selettivamente inibita	1092	La sintesi proteica avviene in cinque fasi	1137
26.2	Maturazione dell'RNA Gli mRNA degli eucarioti vengono	1093	Il ribosoma è una complessa macchina sopramolecolare	1139
	"incappucciati" all'estremità 5'	1094	BOX 27.2 Da un mondo a RNA a un mondo a proteine	1141
	Gli introni e gli esoni vengono trascritti da DNA a RNA	1095	Gli RNA transfer hanno caratteristiche strutturali peculiari	1141
	L'RNA catalizza la rimozione (splicing) degli introni	1095	Fase 1: le amminoacil-tRNA sintetasi legano il corretto amminoacido ai tRNA corrispondenti	1143
	Gli mRNA degli eucarioti hanno strutture particolari all'estremità 3'	1097	BOX 27.3 Espansione naturale e artificiale del codice genetico	1147
	Un gene può dare origine a prodotti diversi a seguito di modificazioni differenti dell'RNA	1099	Fase 2: uno specifico amminoacido dà inizio alla sintesi proteica	1150
	Anche gli RNA ribosomiali e i tRNA subiscono modificazioni post-trascrizionali	1101	Fase 3: i legami peptidici si formano durante la fase di allungamento	1154
	Gli RNA con funzioni speciali vanno incontro a diversi tipi di modificazioni	1105	Fase 4: la terminazione della sintesi proteica necessita di uno specifico segnale	1156
	Gli RNA con proprietà enzimatiche catalizzano alcune reazioni del metabolismo dell'RNA	1106	BOX 27.4 Variazioni indotte del codice genetico: la soppressione delle mutazioni non senso	1158
	Gli mRNA cellulari vengono degradati a velocità diverse	1108	Fase 5: le catene polipeptidiche neosintetizzate vanno incontro a ripiegamenti e modificazioni	1159
	La polinucleotide fosforilasi sintetizza polimeri simili all'RNA a sequenza casuale	1109	La sintesi proteica è inibita da molti antibiotici e tossine	1161
26.3	Sintesi dell'RNA e del DNA dipendente dall'RNA	1109	27.3 Trasporto alla destinazione finale (targeting) e degradazione	
	La trascrittasi inversa produce DNA a partire da RNA virale	1110	delle proteine Le modificazioni post-traduzionali di molte	1163
	Alcuni retrovirus causano il cancro e l'AIDS	1112	proteine eucariotiche cominciano nel reticolo	
	Molti trasposoni, retrovirus e introni potrebbero aver avuto una comune origine durante		endoplasmatico La glicosilazione svolge un ruolo chiave	1163
	l'evoluzione	1112	nel trasporto alla destinazione finale delle proteine	1165
BOX	(26.2 MEDICINA La lotta contro l'AIDS con gli inibitori della trascrittasi inversa dell'HIV	1113	Le sequenze di segnale per il trasporto delle proteine nel nucleo non vengono eliminate	1167
	La telomerasi è una trascrittasi inversa specializzata	1113	Anche i batteri utilizzano sequenze di segnale per trasportare le proteine alla destinazione finale	1168

XXVI Indice © 978-88-08-2**6148-**9

	Le cellule importano le proteine per endocitosi mediata da recettori	1169		Regolazione dell'espressione genica negli eucarioti	1198
	In tutte le cellule la degradazione delle proteine è mediata da sistemi specializzati	1170		La cromatina trascrizionalmente attiva è strutturalmente diversa dalla cromatina inattiva	1199
	Termini chiave	1173		La maggior parte dei promotori eucariotici	1200
	Ulteriori letture	1173		è regolata positivamente Gli attivatori e i coattivatori che si legano al DNA	1200
	Problemi	1174		facilitano l'organizzazione dei fattori generali di trascrizione	1201
	CAPITOLO 28			Nel lievito i geni del metabolismo del galattosio	1201
Re	golazione dell'espressione genica			sono soggetti a regolazione positiva e negativa Gli attivatori della trascrizione hanno strutture	1204
				modulari	1205
28.1	Principi di regolazione genica L'RNA polimerasi si lega al DNA in corrispondenza dei promotori	1180		L'espressione dei geni eucariotici può essere	
		1180		regolata da segnali intercellulari e intracellulari	1206
	L'inizio della trascrizione è regolato da proteine che si legano ai promotori o vicino ai promotori	1181		La regolazione può essere il risultato della fosforilazione di fattori nucleari trascrizionali	1207
	Molti geni batterici sono raggruppati e regolati in operoni	1182		Molti mRNA eucariotici sono sottoposti a repressione della traduzione	1208
	operone <i>lac</i> è soggetto a regolazione negativa	1183		ll silenziamento genico post-trascrizionale è mediato dall'interferenza da RNA	1208
	Le proteine regolatrici hanno domini distinti che legano il DNA	1184		Negli eucarioti la regolazione dell'espressione genica mediata dall'RNA avviene in molteplici	
	Le proteine regolatrici hanno anche domini di interazione proteina-proteina	1187		forme	1209
28.2	Regolazione dell'espressione genica	1107		Lo sviluppo è controllato da una cascata di proteine regolatrici	1210
	nei batteri	1189		Le cellule staminali hanno potenzialità	
	L'operone <i>lac</i> è soggetto a regolazione positiva	1189		di sviluppo che possono essere controllate	1215
	Molti geni per gli enzimi della biosintesi degli amminoacidi sono regolati mediante		BOX	28.1 METODI Pinne, ali, becchi e altre strutture	1218
	attenuazione della trascrizione	1191		Termini chiave	1219
	L'induzione della risposta SOS comporta			Ulteriori letture	1220
	la distruzione di repressori proteici	1193		Problemi	1220
	La sintesi delle proteine ribosomiali è coordinata con la sintesi degli rRNA	1194			
	La funzione di alcuni mRNA è regolata in <i>cis</i> o in <i>trans</i> da piccoli RNA (sRNA)	1195		Appendice	1223
	Alcuni geni sono regolati per ricombinazione			Crediti	1229
	genetica	1197		Indice analitico	1241